Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

SwopX Protocol

Prepared By: Yiqun Chen

PeckShield
January 20, 2022

1/20 PeckShield Audit Report #: 2021-418

contact@peckshield.com

Public

Document Properties

Client SwopX Protocol
Title Smart Contract Audit Report
Target SwopX

Version 1.0

Author Xuxian Jiang
Auditors Stephen Bie, Yiqun Chen, Xuxian Jiang
FEVENEGROA Yigun Chen

AVSI oA Xuxian Jiang
Classification il

Version Info

Version Date Author(s) | Description
1.0 January 20, 2022 Xuxian Jiang | Final Release
1.0-rcl1 | December 18, 2021 | Xuxian Jiang | Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Yiqun Chen
+86 183 5897 7782
contact@peckshield.com

2/20 PeckShield Audit Report #: 2021-418

Public

Contents
1 Introduction 4
1.1 About SwopX 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Improved Logic in SwopX::redeemMint() 11
3.2 Revisited Design in SwopX::createTokenForSwopX() 12
3.3 Price Manipulation in SwopXUtil 13
3.4 Incorrect Logic in SwopXStaking::calculatePendingStake() 15
3.5 Incorrect Logic in SwopXPlace::buyltemByToken() 16
3.6 Redundant State/Code Removal 17
4 Conclusion 19
References 20

3/20

PeckShield Audit Report #: 2021-418

Public

1 Introduction

Given the opportunity to review the SwopX design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence

of several issues related to either security or performance. This document outlines our audit results.

1.1 About SwopX

swopX protocol has an asset token (swopX721) and a utility token (Swopx20). Users can mint NFT tokens
for selling or swapping with other NFTs. During the sale, if there is a match, both seller and buyer
get rewards. The protocol also has a time-bound library that cycles every 30 days for claiming the
rewards. In addition, the protocol has a swapPlace contract that interacts with the SushiSwap DEX to
obtain the USD price of the swopx20 utility token.

The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of SwopX

Item Description

Name | SwopX Protocol
Type | Ethereum Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | January 20, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

e https://github.com/pcanwar/swap.git (fbd544a)

4/20 PeckShield Audit Report #: 2021-418

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

e https://github.com/pcanwar/swap.git (98e6739)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
3]
f Medium Medium
E

Low Medium

High Medium Low
Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a

severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/20 PeckShield Audit Report #: 2021-418

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category

Basic Coding Bugs

Checklist Items |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6,20

PeckShield Audit Report #: 2021-418

Public

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/20 PeckShield Audit Report #: 2021-418

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8,/20

PeckShield Audit Report #: 2021-418

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the swopx protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover

possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

DO N NN O

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.

9/20 PeckShield Audit Report #: 2021-418

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-

ities, 2 medium-severity vulnerabilities, and 2 low-severity vulnerabilities.

Table 2.1: Key SwopX Audit Findings

PVE-001 Low Improved Logic in | Business Logic Fixed
SwopX::redeemMint()

PVE-002 | Medium | Revisited Design in | Business Logic Fixed
SwopX::create TokenForSwopX()

PVE-003 High Price Manipulation in SwopXUtil Time and State | Fixed

PVE-004 High Incorrect Logic in SwopXStak- | Business Logic Fixed
ing::calculatePendingStake()
PVE-005 | Medium | Incorrect Logic in SwopX- | Business Logic Fixed
Place::buyltemByToken()
PVE-006 Low Redundant Data/Code Removal Coding Practices | Fixed

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3

for details.

10/20 PeckShield Audit Report #: 2021-418

117

118
119
120
121
122
123
124
125
126
127
128

Public

3 Detailed Results

3.1 Improved Logic in SwopX::redeemMint()

e |ID: PVE-001 e Target: SwopX

e Severity: Low e Category: Business Logic [5]

e Likelihood: Low e CWE subcategory: CWE-837 [3]
e Impact: Medium

Description

The swopX protocol allows to buy an NFT with a so-called 1azy mint mechanism. With this mechanism,
the NFT will not be minted until it is purchased. While reviewing its logic, we notice the current
implementation can be improved.

To elaborate, we show below the related redeemMint () function. It implements a rather straight-
forward logic in taking the payment to buy a freshly-minted NFT. However, it comes to our attention
the payment requires the contract to approve itself with the offered price: WETH.safeApprove (address
(this), offeredPrice) (line 133). While the intention here is to approve the payment, the actual
approval needs to initiate from the buyer, instead of the contract itself. In other words, the buy still
needs to approve swopX contract for the payment amount!

function redeemMint (IERC20 _erc20Contract, address signer, uint256 price, uint256
nonce,
uint offeredPrice,
bytes calldata signature) nonReentrant supportInterface(_erc20Contract)
external {
IERC20 WETH = IERC20(_erc20Contract);

//require (_hasRole (keccak256 ("LAZY_MINTER_ROLE"), signer) == true, "N1");
// uint _price = ISwopXUti(IswopXUti).getETHPrice(price);

uint calllItFee = price * 100;

uint fee = callltFee / 1le4;

uint payment = price + fee ;

require (offerdPrice >= payment, "A1");

11/20 PeckShield Audit Report #: 2021-418

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

159
160
161

Public

require(signer != msg.sender, "A2");

require (WETH.DbalanceOf (msg.sender) >= offerdPrice, "A3");
require(_verify(signer, _hash(price, nonce), signature), "N2");
require (identifiedSignature [signature] == false, "R1");
WETH.safeApprove (address (this), offerdPrice);
WETH.safeTransferFrom(msg.sender, address(this), offerdPrice);
address _receiver = receiverTo;

uint tokenId = createTokenForSwopX(signer);

uint ethPrice = ISwopXUti(IswopXUti).getETHPrice(offerdPrice);
storaged (tokenId, price, ethPrice, false);

_transfer (signer, msg.sender, tokenId);

WETH.safeTransferFrom(address (this), _receiver, fee);
WETH.safeTransferFrom(address (this), signer, offerdPrice - fee);
identifiedSignature[signature] = true;

emit RedeemMint (tokenId, signer, msg.sender, offerdPrice - fee, fee);

LiSth1g 3.1: SwopX: :redeemMint ()

Recommendation Properly revise the above redeemMint () routine to arrange the right payment.

Status The issue has been fixed by this commit: 68bdae9.

3.2 Reuvisited Design in SwopX::createTokenForSwopX()

e |D: PVE-002 e Target: SwopX

e Severity: Medium e Category: Business Logic [5]

e Likelihood: Medium e CWE subcategory: CWE-837 [3]
e Impact: Medium

Description

The 1azy mint mechanism requires the instant mint of a new NFT, which is facilitated with a helper
routine createTokenForSwopX(). Our analysis on this helper routine shows it unnecessarily grants to
the current swopXPlace contract the privilege to manage all of the caller's NFTs created in Swopk.

To elaborate, we show below the createTokenForSwopX() function. The issue stems from the
setApprovalForAl1() call (line 166), which approves the swopXPlace contract to manage the user's
NFTs. Note that there is a privileged interface in place that allows the owner to change the current
swopXPlace contract. And this design unnecessarily grants extra privileges from unknowing users.

function createTokenForSwopX (address account) public returns (uint) {

require (account != address(0), "Z1");

12/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9

162
163
164
165
166
167
168
169
170
171

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

Public

address _swopXAddress = swopXPlaceAddress;
_tokenIdCounter.increment () ;

uint256 newItemId = _tokenIdCounter.current();
_safeMint (account, newItemId) ;
setApprovalForAll (_swopXAddress, true);

// _setTokenURI (newItemId, tokenURI_);

return newltemlId;

LiStth 3.2: SwopX::createTokenForSwopX ()

Recommendation Revisit the above createTokenForSwopX() routine to better protect users in

not requiring extra privileges.

Status The issue has been fixed by this commit: £86ba6s.

3.3 Price Manipulation in SwopXUtil

ID: PVE-003 e Target: SwopXUtil

Severity: High e Category: Time and State [6]
Likelihood: High e CWE subcategory: CWE-663 [2]
Impact: High

Description

To facilitate the sale of NFTs, there is a constant need of swapping one asset to another in SwopX.

Accordingly, the protocol has provided helper routines to facilitate the asset conversion: _toUsD(),

getUSDPrice(), getETHPrice(), and getMaticPrice().

function toUSD() public view returns(uint){

uint _amount = amount;

IERC20Metadata SwopXtoken = IERC20Metadata(pair.token0());
(uint usd, uint swopx,) = pair.getReserves();

uint res = swopx*(10 ** SwopXtoken.decimals());

return ((_amount * res)/usd);

function getUSDPrice (uint _amount) public view returns(uint)

{

IERC20Metadata tokenEthUsdc = IERC20Metadata (ethUsdc.tokenO0());
(uint usd, uint weth,) = ethUsdc.getReserves();
uint res = weth*(10 ** tokenEthUsdc.decimals());

13/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/f86b468

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Public

return ((_amount * res)/usd); // return amount of ethereum needed to buy item.

}

// to set an item price to ETH.. WETH

function getETHPrice(uint _amount) public view returns(uint)

{

IERC20Metadata tokenEthUsdc = IERC20Metadata (ethUsdc.tokenl1());
(uint usd , uint weth,) = ethUsdc.getReserves();
uint res = usd*(10** tokenEthUsdc.decimals());

return ((_amount * res)/weth);

function getMaticPrice(uint _amount) public view returns(uint)

{

IERC20Metadata tokenMatic = IERC20Metadata(maticUsd.tokenl1());
(uint usd , uint weth,) = maticUsd.getReserves();
uint res = usd*(10** tokenMatic.decimals());

return ((_amount * res)/weth);

Listing 3.3: stakingV2: :deposit()

To elaborate, we show above these helper routines. We notice the conversion is routed to Uniswapv2
-based DEXs and the related spot reserves are used to compute the price! Therefore, they are
vulnerable to possible front-running attacks, resulting in possible loss for the token conversion.
Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a large
trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-back
of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a loss
and brings a smaller return as expected to the trading user because the swap rate is lowered by the
preceding sell. As a mitigation, we may consider specifying the restriction on possible slippage caused
by the trade or referencing the TWAP or time-weighted average price of UniswapV2. Nevertheless, we
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is

still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective mitigation (e.g., slippage control) to the above front-
running attack to better protect the interests of farming users.

Status This issue has been fixed in the following commits: 4f0060d and a7691as8.

14/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/4f0060d
https://github.com/pcanwar/swap/commit/a7691a8

70
71

73
74
75
76
7
78
79
80
81
82
83
84

86
87
88
89

Public

3.4 Incorrect Logic in SwopXStaking::calculatePendingStake()

e ID: PVE-004 e Target: SwopXStaking

e Severity: High e Category: Business Logic [5]

e Likelihood: High e CWE subcategory: CWE-837 [3]
e Impact: High

Description

To engage protocol users, the protocol has a built-in staking contract swopXstaking that provides
rewards to staking users. And this staking contract keeps track of the current staking amount for
each user and provides corresponding rewards. Our analysis on this staking contract shows the
current accounting scheme is flawed.

In the following, we show below the related setAccount () routine. This routine will be invoked for
every single deposit, including the new user’s first deposit. Based on the implementation, it makes
user of another routine calculatePendingStake () to compute the latest pending rewards. However, the
calculatePendingStake() routine imposes three requirements: () require(_holder != address(0) (line
87),(|D require('holders.contains(_holder) Uine 88),and (”|)require(balance[_holder] <= 0) Uine
89). While first requirement is reasonable, the second and the third requirement may unnecessarily
block legitimate deposits!

function setAccount (address account) private {

require (account != address(0) , "zero address");

uint pendingBalance = calculatePendingStake (account);
if (pendingBalance > 0) {
uint stakedAmount = balancel[account];
stakedAmount += pendingBalance;
balance[account] = stakedAmount;
uint _totalRewards = totalRewards;
_totalRewards += stakedAmount;
totalRewards = _totalRewards;
emit Transferred(account, pendingBalance);
}

stakingClaimedTime [account] = block.timestamp;

Listing 3.4: swopXStaking: : setAccount ()

function calculatePendingStake (address _holder) public view returns (uint) {

require(_holder != address(0) , "Zero Address");
require ('holders.contains (_holder) , "Non_Holders");
require (balance[_holder] <= 0 , "No_Balance");

15/20 PeckShield Audit Report #: 2021-418

91
92
93
94
95

97
98

356
357
358
359
361

363
364

Public

uint calculateTimeDiff = block.timestamp - stakingClaimedTime[_holder];
uint stakedAmount = balance[_holder];

uint pendingBalanceAfterStaking ;

uint _amount = stakedAmount * rewardRate * calculateTimeDiff;

pendingBalanceAfterStaking = (_amount/ rewardInterval) / 1le4;

return pendingBalanceAfterStaking;
Listing 3.5: swopXStaking: :calculatePendingStake ()

Recommendation Revisit the above deposit/reward logic to prevent legitimate users from

being blocked.

Status This issue has been fixed in the following commits: 68bdae9 and 62eacse.

3.5 Incorrect Logic in SwopXPlace::buyltemByToken()

e ID: PVE-005 e Target: SwopXPlace

e Severity: Medium e Category: Business Logic [5]

e Likelihood: Medium e CWE subcategory: CWE-837 [3]
e Impact: Medium

Description

The swopX protocol has another core contract i.e., SwopXPlace, that allows for making purchases or
swaps. While analyzing this contract, we notice a key function buyItemByToken() whose logic can be
improved.

To elaborate, we show below the buyTtemByToken() function. As the name indicates, this function
is used to purchase a specific NFT with the given payment token and amount. It comes to our
attention that the item value is computed as itemvalue = amount - feeCall (line 369), which should
be itemValue = ethPrice - feeCall. [he feePaid is currenﬂy calculated as amount - ethPrice (Hne
370), which needs to be revised as amount - ethPrice + feeCall.

function buyItemByToken (IERC20 _erc20Contract, uint _itemId, uint amount) public
nonReentrant supportInterface(_erc20Contract) {
require (amount > 0,"Zero_Amount") ;
// require (ISwopX(swopXAddress).isForSale(_itemId) == true,"Not_For_Sale");
IERC20 WETH = IERC20(_erc20Contract);

address oldOwnered = IERC721(swopXAddress).ownerOf (_itemId) ;

uint usdPrice = ISwopX(swopXAddress).usdPrice(_itemId);
ISwopX (swopXAddress) .ethPrice(_itemId);

uint ethPrice

16/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9
https://github.com/pcanwar/swap/commit/62eac5e

366

368
369
370

372
373

375
376
377

379
380
381
382
383
384
385

387
388
389
390
391
392

Public

uint usdValue = ISwopXUti (SWOPXUTI).getUSDPrice (amount);
uint feeCall = calculatedFee(_itemId);

uint itemValue = amount - feeCallj;

uint feePaid = amount - ethPrice ;

"Invalid");
"Invalid");

require (itemValue >= ethPrice,

require (usdValue >= usdPrice,

uint currentAmountAfterFee =

require (WETH.balanceOf (msg.sender) > currentAmountAfterFee,
"NOT”) ;

require (currentAmountAfterFee >= amount,

tokenOwner [_itemId] =
// IERC20 (WETH) .approve (oldOwnered,
// IERC20(WETH) .approve(receiverTo,
WETH.safeApprove (address (this) ,
WETH.safeTransferFrom(msg.sender,
WETH.safeTransferFrom(address (this),
WETH.safeTransferFrom(address (this),

msg.sender;

// _safeTxBuyFrom(msg.sender, address(this),
// _safeTxBuyFrom(address (this),
// _safeTxBuyFrom(address(this),

oldOwnered,

receiverTo,

IERC721 (swopXAddress) .transferFrom(oldOwnered,

emit BuyLog(oldOwnered, msg.sender,

Listing 3.6:

receiverTo,

oldOwnered,

itemValue, _itemId,

itemValue + feePaid;

“NOT") ;

itemValue) ;
feePaid) ;

currentAmountAfterFee) ;
address (this),

currentAmountAfterFee) ;
feePaid) ;

itemValue) ;

itemValue + feePaid);
itemValue) ;

feePaid) ;

msg.sender , _itemId);
feePaid);

SwopXPlace: :buyItemByToken ()

Moreover, the sanity checks with the queried ethPrice as well as the currentAmountAfterFee need

to be accordingly adjusted.

Recommendation Revise the above buyItemByToken() logic to properly purchase the intended

NFT.

Status This issue has been fixed in the following commits: 68bdae9 and 62eacse.

17/20

PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9
https://github.com/pcanwar/swap/commit/62eac5e

19
20
21
22
23
24
25
26
27
28

Public

3.6 Redundant State/Code Removal

ID: PVE-006 e Target: Multiple Contracts
Severity: Low e Category: Coding Practices [4]
Likelihood: Low e CWE subcategory: CWE-563 [1]
Impact: Low

Description

The swopx protocol makes good use of a number of reference contracts, such as ERC20, SafeFRC20

, SafeMath, and ERC721, to facilitate its code implementation and organization. For example, the

SwopXPlace smart contract has so far imported at least five reference contracts. However, we observe

the inclusion of certain unused code or the presence of unnecessary redundancies that can be safely

removed.

For example, if we examine closely the SwopXPlaceStorage contract, there are a number of storage

states that are defined, but not used. Examples include the following states, i.e., isAlreadyMacthed,

_allTokens, and addressToRewardMile.

mapping (address => mapping(address => bool)) internal _iMatched;
mapping (uint256 => mapping(uint256 => bool)) internal _isMatched;

mapping (uint => bool) internal isAlreadyMacthed;

//mapping (uint => uint) internal served;

// mapping (address => uint256) internal totalMatch;
mapping (address => uint256) internal _allTokens;

mapping (address => mapping (uint => rewardMileStone)) public addressToRewardMile;

Listing 3.7: The swopxPlacestorage Contract

In addition, the swopXControl contract defines an unused state achievedHash, which can be safely

removed. The library contract SetMileStone makes use of the local variable reTimer, which can

removed as well.

Recommendation Consider the removal of the redundant state (or code) with a simplified,

consistent implementation.

Status The issue has been fixed by this commit: 68bdae9.

18/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the swopx protocol, which has an
asset token swopX721 and a utility token swopx20. Users can mint NFT tokens for selling or swapping
with other nFTs. The current code base can be further improved in both design and implementation.
Those identified issues are promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

19/20 PeckShield Audit Report #: 2021-418

Public

References

[1]

2]

[3]

[4]

[3]

[6]
[7]
[8]

[9]

MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/
definitions/563.html.

MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/
data/definitions/837.html.

MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.
MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.
MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2021-418

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About SwopX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Logic in SwopX::redeemMint()
	Revisited Design in SwopX::createTokenForSwopX()
	Price Manipulation in SwopXUtil
	Incorrect Logic in SwopXStaking::calculatePendingStake()
	Incorrect Logic in SwopXPlace::buyItemByToken()
	Redundant State/Code Removal

	Conclusion
	References

