
Public

SMART CONTRACT AUDIT REPORT

for

SwopX Protocol

Prepared By: Yiqun Chen

PeckShield
January 20, 2022

1/20 PeckShield Audit Report #: 2021-418

contact@peckshield.com

Public

Document Properties

Client SwopX Protocol
Title Smart Contract Audit Report
Target SwopX
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Yiqun Chen, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 January 20, 2022 Xuxian Jiang Final Release
1.0-rc1 December 18, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2021-418

Public

Contents

1 Introduction 4
1.1 About SwopX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Logic in SwopX::redeemMint() . 11
3.2 Revisited Design in SwopX::createTokenForSwopX() 12
3.3 Price Manipulation in SwopXUtil . 13
3.4 Incorrect Logic in SwopXStaking::calculatePendingStake() 15
3.5 Incorrect Logic in SwopXPlace::buyItemByToken() 16
3.6 Redundant State/Code Removal . 17

4 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2021-418

Public

1 | Introduction

Given the opportunity to review the SwopX design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About SwopX

SwopX protocol has an asset token (SwopX721) and a utility token (SwopX20). Users can mint NFT tokens
for selling or swapping with other NFTs. During the sale, if there is a match, both seller and buyer
get rewards. The protocol also has a time-bound library that cycles every 30 days for claiming the
rewards. In addition, the protocol has a SwapPlace contract that interacts with the SushiSwap DEX to
obtain the USD price of the SwopX20 utility token.

The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of SwopX

Item Description
Name SwopX Protocol
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report January 20, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/pcanwar/swap.git (fbd544a)

4/20 PeckShield Audit Report #: 2021-418

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/pcanwar/swap.git (98e6739)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/20 PeckShield Audit Report #: 2021-418

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2021-418

Public

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2021-418

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2021-418

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the SwopX protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 2

Low 2

Informational 0

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/20 PeckShield Audit Report #: 2021-418

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 2 medium-severity vulnerabilities, and 2 low-severity vulnerabilities.

Table 2.1: Key SwopX Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Logic in

SwopX::redeemMint()
Business Logic Fixed

PVE-002 Medium Revisited Design in
SwopX::createTokenForSwopX()

Business Logic Fixed

PVE-003 High Price Manipulation in SwopXUtil Time and State Fixed
PVE-004 High Incorrect Logic in SwopXStak-

ing::calculatePendingStake()
Business Logic Fixed

PVE-005 Medium Incorrect Logic in SwopX-
Place::buyItemByToken()

Business Logic Fixed

PVE-006 Low Redundant Data/Code Removal Coding Practices Fixed

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2021-418

Public

3 | Detailed Results

3.1 Improved Logic in SwopX::redeemMint()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: SwopX

• Category: Business Logic [5]

• CWE subcategory: CWE-837 [3]

Description

The SwopX protocol allows to buy an NFT with a so-called lazy mint mechanism. With this mechanism,
the NFT will not be minted until it is purchased. While reviewing its logic, we notice the current
implementation can be improved.

To elaborate, we show below the related redeemMint() function. It implements a rather straight-
forward logic in taking the payment to buy a freshly-minted NFT. However, it comes to our attention
the payment requires the contract to approve itself with the offered price: WETH.safeApprove(address

(this), offeredPrice) (line 133). While the intention here is to approve the payment, the actual
approval needs to initiate from the buyer, instead of the contract itself. In other words, the buy still
needs to approve SwopX contract for the payment amount!

117 function redeemMint(IERC20 _erc20Contract , address signer , uint256 price , uint256
nonce ,

118 uint offeredPrice ,
119 bytes calldata signature) nonReentrant supportInterface(_erc20Contract)
120 external {
121 IERC20 WETH = IERC20(_erc20Contract);
122
123 // require(_hasRole(keccak256 (" LAZY_MINTER_ROLE "), signer) == true , "N1");
124 // uint _price = ISwopXUti(IswopXUti).getETHPrice(price);
125 uint callItFee = price * 100;
126 uint fee = callItFee / 1e4;
127 uint payment = price + fee ;
128 require(offerdPrice >= payment , "A1");

11/20 PeckShield Audit Report #: 2021-418

Public

129 require(signer != msg.sender , "A2");
130 require(WETH.balanceOf(msg.sender) >= offerdPrice , "A3");
131 require(_verify(signer , _hash(price , nonce), signature), "N2");
132 require(identifiedSignature[signature] == false , "R1");
133 WETH.safeApprove(address(this), offerdPrice);
134 WETH.safeTransferFrom(msg.sender , address(this), offerdPrice);
135 address _receiver = receiverTo;
136 uint tokenId = createTokenForSwopX(signer);
137 uint ethPrice = ISwopXUti(IswopXUti).getETHPrice(offerdPrice);
138 storaged(tokenId , price , ethPrice , false);
139 _transfer(signer , msg.sender , tokenId);
140 WETH.safeTransferFrom(address(this), _receiver , fee);
141 WETH.safeTransferFrom(address(this), signer , offerdPrice - fee);
142
143 identifiedSignature[signature] = true;
144 emit RedeemMint(tokenId , signer , msg.sender , offerdPrice - fee , fee);
145
146 }

Listing 3.1: SwopX::redeemMint()

Recommendation Properly revise the above redeemMint() routine to arrange the right payment.

Status The issue has been fixed by this commit: 68bdae9.

3.2 Revisited Design in SwopX::createTokenForSwopX()

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: SwopX

• Category: Business Logic [5]

• CWE subcategory: CWE-837 [3]

Description

The lazy mint mechanism requires the instant mint of a new NFT, which is facilitated with a helper
routine createTokenForSwopX(). Our analysis on this helper routine shows it unnecessarily grants to
the current swopXPlace contract the privilege to manage all of the caller’s NFTs created in SwopX.

To elaborate, we show below the createTokenForSwopX() function. The issue stems from the
setApprovalForAll() call (line 166), which approves the swopXPlace contract to manage the user’s
NFTs. Note that there is a privileged interface in place that allows the owner to change the current
swopXPlace contract. And this design unnecessarily grants extra privileges from unknowing users.

159 function createTokenForSwopX(address account) public returns (uint) {
160
161 require(account != address (0), "Z1");

12/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9

Public

162 address _swopXAddress = swopXPlaceAddress;
163 _tokenIdCounter.increment ();
164 uint256 newItemId = _tokenIdCounter.current ();
165 _safeMint(account , newItemId);
166 setApprovalForAll(_swopXAddress , true);
167 // _setTokenURI(newItemId , tokenURI_);
168
169 return newItemId;
170
171 }

Listing 3.2: SwopX::createTokenForSwopX()

Recommendation Revisit the above createTokenForSwopX() routine to better protect users in
not requiring extra privileges.

Status The issue has been fixed by this commit: f86b468.

3.3 Price Manipulation in SwopXUtil

• ID: PVE-003

• Severity: High

• Likelihood: High

• Impact: High

• Target: SwopXUtil

• Category: Time and State [6]

• CWE subcategory: CWE-663 [2]

Description

To facilitate the sale of NFTs, there is a constant need of swapping one asset to another in SwopX.
Accordingly, the protocol has provided helper routines to facilitate the asset conversion: _toUSD(),
getUSDPrice(), getETHPrice(), and getMaticPrice().

339 function toUSD() public view returns(uint){
340 uint _amount = amount;
341 IERC20Metadata SwopXtoken = IERC20Metadata(pair.token0 ());
342 (uint usd , uint swopx ,) = pair.getReserves ();
343 uint res = swopx *(10 ** SwopXtoken.decimals ());
344 return ((_amount * res)/usd);
345 }
346
347
348 function getUSDPrice(uint _amount) public view returns(uint)
349 {
350
351 IERC20Metadata tokenEthUsdc = IERC20Metadata(ethUsdc.token0 ());
352 (uint usd , uint weth ,) = ethUsdc.getReserves ();
353 uint res = weth *(10 ** tokenEthUsdc.decimals ());

13/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/f86b468

Public

354 return ((_amount * res)/usd); // return amount of ethereum needed to buy item.
355 }
356
357
358 // to set an item price to ETH.. WETH
359
360 function getETHPrice(uint _amount) public view returns(uint)
361 {
362
363 IERC20Metadata tokenEthUsdc = IERC20Metadata(ethUsdc.token1 ());
364 (uint usd , uint weth ,) = ethUsdc.getReserves ();
365 uint res = usd *(10** tokenEthUsdc.decimals ());
366 return ((_amount * res)/weth);
367 }
368
369
370 function getMaticPrice(uint _amount) public view returns(uint)
371 {
372
373 IERC20Metadata tokenMatic = IERC20Metadata(maticUsd.token1 ());
374 (uint usd , uint weth ,) = maticUsd.getReserves ();
375 uint res = usd *(10** tokenMatic.decimals ());
376 return ((_amount * res)/weth);
377 }

Listing 3.3: StakingV2::deposit()

To elaborate, we show above these helper routines. We notice the conversion is routed to UniswapV2

-based DEXs and the related spot reserves are used to compute the price! Therefore, they are
vulnerable to possible front-running attacks, resulting in possible loss for the token conversion.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a large
trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-back
of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a loss
and brings a smaller return as expected to the trading user because the swap rate is lowered by the
preceding sell. As a mitigation, we may consider specifying the restriction on possible slippage caused
by the trade or referencing the TWAP or time-weighted average price of UniswapV2. Nevertheless, we
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is
still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective mitigation (e.g., slippage control) to the above front-
running attack to better protect the interests of farming users.

Status This issue has been fixed in the following commits: 4f0060d and a7691a8.

14/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/4f0060d
https://github.com/pcanwar/swap/commit/a7691a8

Public

3.4 Incorrect Logic in SwopXStaking::calculatePendingStake()

• ID: PVE-004

• Severity: High

• Likelihood: High

• Impact: High

• Target: SwopXStaking

• Category: Business Logic [5]

• CWE subcategory: CWE-837 [3]

Description

To engage protocol users, the protocol has a built-in staking contract SwopXStaking that provides
rewards to staking users. And this staking contract keeps track of the current staking amount for
each user and provides corresponding rewards. Our analysis on this staking contract shows the
current accounting scheme is flawed.

In the following, we show below the related setAccount() routine. This routine will be invoked for
every single deposit, including the new user’s first deposit. Based on the implementation, it makes
user of another routine calculatePendingStake() to compute the latest pending rewards. However, the
calculatePendingStake() routine imposes three requirements: (I) require(_holder != address(0) (line
87), (II) require(!holders.contains(_holder) (line 88), and (III) require(balance[_holder] <= 0) (line
89). While first requirement is reasonable, the second and the third requirement may unnecessarily
block legitimate deposits!

70 function setAccount(address account) private {
71 require(account != address (0) , "zero address");

73 uint pendingBalance = calculatePendingStake(account);
74 if (pendingBalance > 0) {
75 uint stakedAmount = balance[account];
76 stakedAmount += pendingBalance;
77 balance[account] = stakedAmount;
78 uint _totalRewards = totalRewards;
79 _totalRewards += stakedAmount;
80 totalRewards = _totalRewards;
81 emit Transferred(account , pendingBalance);
82 }
83 stakingClaimedTime[account] = block.timestamp;
84 }

Listing 3.4: SwopXStaking::setAccount()

86 function calculatePendingStake(address _holder) public view returns (uint) {
87 require(_holder != address (0) , "Zero Address");
88 require(!holders.contains(_holder) , "Non_Holders");
89 require(balance[_holder] <= 0 , "No_Balance");

15/20 PeckShield Audit Report #: 2021-418

Public

91 uint calculateTimeDiff = block.timestamp - stakingClaimedTime[_holder];
92 uint stakedAmount = balance[_holder];
93 uint pendingBalanceAfterStaking ;
94 uint _amount = stakedAmount * rewardRate * calculateTimeDiff;
95 pendingBalanceAfterStaking = (_amount/ rewardInterval) / 1e4;

97 return pendingBalanceAfterStaking;
98 }

Listing 3.5: SwopXStaking::calculatePendingStake()

Recommendation Revisit the above deposit/reward logic to prevent legitimate users from
being blocked.

Status This issue has been fixed in the following commits: 68bdae9 and 62eac5e.

3.5 Incorrect Logic in SwopXPlace::buyItemByToken()

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: SwopXPlace

• Category: Business Logic [5]

• CWE subcategory: CWE-837 [3]

Description

The SwopX protocol has another core contract i.e., SwopXPlace, that allows for making purchases or
swaps. While analyzing this contract, we notice a key function buyItemByToken() whose logic can be
improved.

To elaborate, we show below the buyItemByToken() function. As the name indicates, this function
is used to purchase a specific NFT with the given payment token and amount. It comes to our
attention that the item value is computed as itemValue = amount - feeCall (line 369), which should
be itemValue = ethPrice - feeCall. The feePaid is currently calculated as amount - ethPrice (line
370), which needs to be revised as amount - ethPrice + feeCall.

356 function buyItemByToken(IERC20 _erc20Contract , uint _itemId , uint amount) public
nonReentrant supportInterface(_erc20Contract) {

357 require(amount > 0,"Zero_Amount");
358 // require(ISwopX(swopXAddress).isForSale(_itemId) == true ," Not_For_Sale ");
359 IERC20 WETH = IERC20(_erc20Contract);

361 address oldOwnered = IERC721(swopXAddress).ownerOf(_itemId);

363 uint usdPrice = ISwopX(swopXAddress).usdPrice(_itemId);
364 uint ethPrice = ISwopX(swopXAddress).ethPrice(_itemId);

16/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9
https://github.com/pcanwar/swap/commit/62eac5e

Public

366 uint usdValue = ISwopXUti(SWOPXUTI).getUSDPrice(amount);

368 uint feeCall = calculatedFee(_itemId);
369 uint itemValue = amount - feeCall;
370 uint feePaid = amount - ethPrice ;

372 require(itemValue >= ethPrice , "Invalid");
373 require(usdValue >= usdPrice , "Invalid");

375 uint currentAmountAfterFee = itemValue + feePaid;
376 require(WETH.balanceOf(msg.sender) > currentAmountAfterFee , "NOT");
377 require(currentAmountAfterFee >= amount , "NOT");

379 tokenOwner[_itemId] = msg.sender;
380 // IERC20(WETH).approve(oldOwnered , itemValue);
381 // IERC20(WETH).approve(receiverTo , feePaid);
382 WETH.safeApprove(address(this), currentAmountAfterFee);
383 WETH.safeTransferFrom(msg.sender , address(this), currentAmountAfterFee);
384 WETH.safeTransferFrom(address(this), receiverTo , feePaid);
385 WETH.safeTransferFrom(address(this), oldOwnered , itemValue);

387 // _safeTxBuyFrom(msg.sender , address(this), itemValue + feePaid);
388 // _safeTxBuyFrom(address(this), oldOwnered , itemValue);
389 // _safeTxBuyFrom(address(this), receiverTo , feePaid);
390 IERC721(swopXAddress).transferFrom(oldOwnered , msg.sender , _itemId);
391 emit BuyLog(oldOwnered , msg.sender , itemValue ,_itemId , feePaid);
392 }

Listing 3.6: SwopXPlace::buyItemByToken()

Moreover, the sanity checks with the queried ethPrice as well as the currentAmountAfterFee need
to be accordingly adjusted.

Recommendation Revise the above buyItemByToken() logic to properly purchase the intended
NFT.

Status This issue has been fixed in the following commits: 68bdae9 and 62eac5e.

17/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9
https://github.com/pcanwar/swap/commit/62eac5e

Public

3.6 Redundant State/Code Removal

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [4]

• CWE subcategory: CWE-563 [1]

Description

The Swopx protocol makes good use of a number of reference contracts, such as ERC20, SafeERC20

, SafeMath, and ERC721, to facilitate its code implementation and organization. For example, the
SwopXPlace smart contract has so far imported at least five reference contracts. However, we observe
the inclusion of certain unused code or the presence of unnecessary redundancies that can be safely
removed.

For example, if we examine closely the SwopXPlaceStorage contract, there are a number of storage
states that are defined, but not used. Examples include the following states, i.e., isAlreadyMacthed,
_allTokens, and addressToRewardMile.

19 mapping(address => mapping(address => bool)) internal _iMatched;
20 mapping(uint256 => mapping(uint256 => bool)) internal _isMatched;
21
22 mapping(uint => bool) internal isAlreadyMacthed;
23 // mapping(uint => uint) internal served;
24
25 // mapping(address => uint256) internal totalMatch;
26 mapping(address => uint256) internal _allTokens;
27
28 mapping(address => mapping (uint => rewardMileStone)) public addressToRewardMile;

Listing 3.7: The SwopXPlaceStorage Contract

In addition, the SwopXControl contract defines an unused state achievedHash, which can be safely
removed. The library contract SetMileStone makes use of the local variable reTimer, which can
removed as well.

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status The issue has been fixed by this commit: 68bdae9.

18/20 PeckShield Audit Report #: 2021-418

https://github.com/pcanwar/swap/commit/68bdae9

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the SwopX protocol, which has an
asset token SwopX721 and a utility token SwopX20. Users can mint NFT tokens for selling or swapping
with other NFTs. The current code base can be further improved in both design and implementation.
Those identified issues are promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/20 PeckShield Audit Report #: 2021-418

Public

References

[1] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[2] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[3] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[6] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2021-418

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About SwopX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Logic in SwopX::redeemMint()
	Revisited Design in SwopX::createTokenForSwopX()
	Price Manipulation in SwopXUtil
	Incorrect Logic in SwopXStaking::calculatePendingStake()
	Incorrect Logic in SwopXPlace::buyItemByToken()
	Redundant State/Code Removal

	Conclusion
	References

